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 Concurrent and Angle-Trajectory Validity and Intra-Trial 
Reliability of a Novel Multi-View Image-Based Motion Analysis 

System 

by 

Namgi Lee 1, Junghoon Ahn 2, Wootaek Lim 3,4,* 

Sports-related injuries are the most common in the lower extremities among physical regions. To evaluate 
impaired functional performance in sports training facilities and sports, a marker-less motion analysis system that can 
measure joint kinematics in bright indoor and outdoor environments is required. The aim of this study was to establish 
the concurrent and angle-trajectory validity and intra-trial reliability of a novel multi-view image-based motion analysis 
system with marker-less pose estimation during lower extremity tasks in healthy young men. Ten healthy young men 
participated voluntarily in this study. The hip and knee joint angles were collected using a multi-view image-based motion 
analysis system (marker-less) and a Vicon motion capture system (with markers) during the lower extremity tasks. 
Intraclass correlation coefficient (ICC) analyses were used to identify the concurrent and angle-trajectory validity and 
intra-trial reliability of the multi-view image-based motion analysis system. In the concurrent validity, the correlation 
analysis revealed that the ICC3, k values on the hip and knee flexions during knee bending in sitting, standing, and squat 
movements were from 0.747 to 0.936 between the two systems. In particular, the angle-trajectory validity was very high 
(ICC3, 1 = 0.859–0.998), indicating a high agreement between the two systems. The intra-trial reliability of each system 
was excellent (ICC3, 1 = 0.773–0.974), reflecting high reproducibility. We suggest that this novel marker-less motion 
analysis system is highly accurate and reliable for measuring joint kinematics of the lower extremities during the 
rehabilitation process and monitoring sports performance of athletes in training facilities. 
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Introduction 

An average annual estimate of 8.6 million 
sports-related injuries was reported between 2011 
and 2014 in the USA, which represents an age-
adjusted rate of 34.1 per 1,000 persons. The sports-
related injuries reported more than one-half of the 
injury episodes in males (61.3%) and persons aged 
5–24 years (64.9%), owing to the fact that the types 
of activities differed by sex and age groups. 
Physical regions injured while participating in 
sports activities included lower extremities 
(42.0%), upper extremities (30.3%), and the head 

and the neck (16.4%) (Sheu et al., 2016). Common 
lower extremity injuries include strains, sprains, 
tendon rupture, dislocation, and fractures that 
occur during team ball sports, such as basketball, 
soccer, volleyball, and field hockey (Meehan and 
Mannix, 2013; Sheu et al., 2016). A pathologic 
problem at the hip joint can cause immediate gait 
abnormalities, resulting in chronic pain and early 
degeneration in the hip joint. Additionally, knee 
injuries are the most common sports-related 
injuries associated with pain, physical weakening, 
hindering sports participation, depression, and 
early-onset osteoarthritis. One-half of sports- 
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related injury episodes results in emergency 
department visits or hospitalizations (Sheu et al., 
2016). To return to sports after lower extremity 
injuries, the rehabilitation of the injured athlete is 
managed by sports physicians and 
physiotherapists, coaches, and athletic trainers 
through assessment of lower extremity function. 
Standardized functional testing is used to compare 
functional performance data of pre-injury or 
normative data of healthy athletes (Haitz et al., 
2014). 

Three-dimensional (3D) motion capture with 
a marker-based tracking system (e.g., Vicon 
motion capture system) is known as the gold 
standard to assess functional performance, such as 
joint analysis, in both clinical and sports settings 
(Zhou and Hu, 2008). The 3D motion analysis is 
considered a key objective indicator in planning 
treatment interventions and monitoring treatment 
efficiency (Gajdosik and Bohannon, 1987). A 
number of professionals, including physicians and 
physiotherapists, coaches, and athletic trainers 
have been performing objective outcome-based 
care, concerning for example joint angles, and thus, 
the use of valid and reliable instruments to 
measure the joint angle is imperative. The joint 
angle measures represent the index of change in 
sports functional performance or the evaluation 
outcome value to therapeutic interventions during 
rehabilitation programs (García-Rubio et al., 2019; 
Lim, 2021; Oh et al., 2019). To achieve accurate and 
reliable results, highly skilled and well-trained 
operators are required to calibrate and run the 3D 
motion capture system; thus, they are not easily 
available to all professionals (Krause et al., 2015). 
Although the 3D motion capture system is the most 
valid and reliable measure, it is expensive, and 
requires a set-up environment which has limited 
feasibility in most rehabilitation and sports 
training facilities (Bahadori et al., 2019). In 
particular, it is difficult to measure the joint angle 
in bright indoor and outdoor areas, such as sports 
training facilities and fields, because the camera is 
equipped with an infrared strobe to emit a light 
signal and collect the reflected signal from the 
markers.  

To overcome this challenge, a multi-view 
image-based motion analysis system has been 
developed that reliably measures the joint 
kinematics in bright indoor and outdoor 
conditions, regardless of obstacles (e.g., other  
 

 
functional measure equipment) near the testing 
area. That is, this system has the capability to 
achieve motion tracking with marker-less pose 
estimation based on image analysis technology in 
a space without environmental restrictions. 
Although marker-less motion capture technology 
(commonly images) has gained an increasing 
attention in biomechanics, there is a limited 
number of studies for comparing the difference 
between the marker-less motion capture technique 
and marker-based motion capture technique 
(Ceseracciu et al., 2009, 2014). Therefore, the aim of 
this study was to establish the concurrent and 
angle-trajectory validity of a novel multi-view 
image-based motion analysis system with marker-
less pose estimation through hip and knee joint 
angle measurements by comparing them with joint 
angle data obtained using a Vicon motion capture 
system with markers. In addition, this study was 
conducted to determine the intra-trial reliability of 
the multi-view image-based motion analysis 
system and Vicon motion capture system in 
healthy young men. 

Methods 
Participants 

In this study, ten health young men (age 
= 25.4 ± 2.0 years, body height = 174.4 ± 5.0 cm, body 
mass = 68.9 ± 6.8 kg) who could perform the 
experimental tasks, such as knee bending in sitting 
and standing positions and deep squat 
movements, accurately and consistently, 
participated voluntarily. Participants were 
excluded if they had a current or past history of 
neurological, musculoskeletal, or cognitive system 
disorders. Prior to the commencement of the study, 
participants were informed regarding the purpose 
and procedures of the study and signed an 
informed consent form. The experimental protocol 
followed the Declaration of Helsinki and was 
approved by the Institutional Review Board of the 
Woosong University before its execution.  
Measures 
Multi-View Image-Based Motion Analysis System  

A multi-view image collection system 
consisting of four red-green-blue (RGB) cameras 
(4DEYE, SYM healthcare lnc., Seoul, Republic of 
Korea) was used to capture participants’ posture at 
30 Hz from four different directions (Figure 1). 
After image collection, the angles of the hip and 
knee joints were analyzed using a custom analysis  
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program developed based on the open source 
image analysis libraries; OpenCV (Bradski and 
Kaehler, 2000) and OpenPose (Cao et al., 2021). 
Specifically, OpenPose software estimated the two-
dimensional positions of seven physical keypoints, 
including the neck, the left shoulder, the right 
shoulder, the mid hip, the right hip, the knee, and 
the ankle, in each of the four images 
simultaneously captured by the four cameras. 
Then, OpenCV software reconstructed the three-
dimensional position of each keypoint from the 
four different two-dimensional positions of the 
keypoint based on information on the relative 
position and orientation of the cameras.  

Hip flexion/extension was described as 
the angle of the femoral shaft relative to the trunk, 
while knee flexion/extension was described as the 
angle between the femoral and tibial shafts. First, 
the trunk coordinates were obtained as follows: the 
Z-axis of the trunk was defined as a vector pointing 
to the neck from the mid-hip. The X-axis was 
defined as a vector normal to the plane consisting 
of the left shoulder, the right shoulder, and the mid 
hip. The Y-axis was a vector orthogonal to the Z- 
and X-axes. Subsequently, the femoral and tibial 
shaft vectors were defined as vectors pointing the 
knee from the right hip and the ankle from the 
knee, respectively. To quantify the hip flexion in 
the three-dimensional space regardless of the plane 
of hip flexion, the hip flexion angle was calculated 
as the angle between the negative Z-axis of the 
trunk coordinate and the femoral shaft vector. As 
the leg raised, the hip flexion angle increased from 
0° (i.e., anatomical neutral posture) to 180°. Finally, 
the calculated joint angles were interpolated to 
match the data length with the data collected at 100 
Hz using the Vicon motion capture system. 
Vicon Motion Capture System  

A Vicon motion capture system (MX T 
series, Oxford Metrics, Ltd., Oxford, UK) has 
proprietary hardware to capture the coordinates of 
the positioning points using eight infrared (IR) 
cameras. This system also requires retro-reflective 
markers to the emitted IR light signal from the IR 
strobe of each camera. Four markers (14-mm in 
diameter) were attached to the trunk and lower 
extremity landmarks, including the seventh 
cervical vertebrae (C7), the eighth thoracic 
vertebrae (T8), the jugular notch, and the xiphoid 
process of the sternum. Two cross-shaped clusters 
consisting of four markers were attached to the  
 

 
thigh and the shank. One axis of the cross was 
aligned to the femoral or tibial shaft. Each camera 
captured the three-dimensional locations of all 
markers at 100 Hz. Joint angles were calculated in 
a similar manner as the analysis based on the 
multi-view motion capture system, however, the 
trunk coordinate, the femoral shaft, and the tibial 
shaft vector were defined differently using the 
positioning points of each marker. The trunk 
coordinate was obtained as described by Wu and 
colleague’s methods (Wu et al., 2005). The femoral 
and tibial shaft vectors were obtained using a 
cross-shaped cluster. The joint angle analysis was 
conducted using MATLAB R2018A (The 
Mathworks, Inc., Natick, MA, USA). 
Procedures 

The lower extremity tasks consisted of 
knee bending in sitting and standing (open 
kinematic chain) and squat movements (closed 
kinematic chain). First, to perform the knee 
bending while sitting, the starting posture was that 
participants sat on a chair without a back and arm 
rest, and maintained 90° of knee flexion. 
Participants performed full extension of the knee 
joint and repositioned them toward the starting 
posture. Second, for knee bending while standing, 
participants maintained standing with full knee 
extension (starting posture), and then they 
performed knee bending up to approximately 90° 
flexion. Finally, to perform the squat movement, 
the starting posture was that the feet were located 
shoulder width apart with arms stretched out 
anteriorly to the body and parallel to the floor. 
Participants performed a deep squat and then 
moved towards the starting posture (Harsted et al., 
2019). Each lower extremity task was performed in 
five trials with a 5-s rest interval between each trial, 
and the rest interval between experimental tasks 
was three to five minutes in this study. During the 
lower extremity tasks, the joint angle data on hip 
and knee flexion were collected and processed, and 
each trial data and average data of trials were used 
for further analysis. 
Statistical Analysis 

Descriptive statistics included mean and 
standard deviations. Intra-class correlation 
coefficients (ICCs) and 95% confidence intervals 
(CIs) were used for the analysis of concurrent and 
angle-trajectory validity (ICC3, k) between the novel 
multi-view image-based motion analysis system 
(marker-less) and the Vicon motion capture system  
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(with markers). ICC analysis was used to assess the 
intra-trial reliability (ICC3, 1) of each motion 
analysis system. ICC values can be interpreted as 
follows: ICC< 0.50 (poor), 0.50–0.75 (moderate), 
0.76–0.90 (good), and > 0.90 (high). In addition, the 
coefficient of variation (CV), standard error of 
measurement (SEM), and minimal detectable 
change (MDC) were calculated to find absolute 
reliability (Overend et al., 2010; Weir, 2005). The 
CV for method error was calculated as follows: CV 
= 100 × (2 × (SDd /√2)/(X1 + X2)); SDd = standard 
deviation (SD) of the differences between two 
measures, X1 and X2 = each mean of the two 
measures (Portney and Watkins, 2009). The SEM 
was calculated as follows: SEM = SD × √(1 – ICC) to 
provide a measure of variability and was used to 
calculate the MDC. Finally, the MDC represents a 
statistical estimate of the smallest amount of 
change to provide confidence that a change was 
not the result of subject variability or measurement 
error, and was calculated as follows: MDC = z-
score (95% CI) × SEM × √2 (Haley and Fragala-
Pinkham, 2006). The level of significance was set at 
p < 0.05. All statistical analyses were performed 
using SPSS for Windows (version 18.0; SPSS Inc., 
Chicago, IL, USA) and Microsoft Excel 2019 
(Microsoft Inc., Redmond, WA, USA).  

 
Results 
Validity  

The concurrent validity of the novel multi-
view image-based motion analysis system 
(marker-less) was determined by comparing the 
Vicon motion capture system (with markers) 
through hip and knee flexion angles during lower 
extremity tasks, as shown in Table 1. Correlation 
analysis revealed that the ICC3, k values on the knee 
flexions in sitting and standing were 0.747 (95% CI 
= −0.017–0.937, CV = 5.80%) and 0.780 (95% CI = 
0.116–0.945, CV = 5.23%), respectively. The hip and 
knee flexions during squat movement showed 
high validity (ICC3, k = 0.902 and 0.936; 95% CI = 
0.606–0.976 and 0.743–0.984; CV = 4.11 and 4.10%, 
respectively) of the multi-view image-based 
motion analysis system (Table 1). 

The angle-trajectory validity of the hip and 
knee joint angles was represented by comparing 
one trial data of each system through full range of 
motion, and the validity data of each participant 
are presented as shown in Table 2. Correlation 
analysis identified that ICC3, 1 values of each 
participant on the knee flexion in sitting and 
standing were very high (ICC3, 1 = 0.938–0.998 and 
0.859–0.998, respectively). ICC3, 1 values for the hip 
and knee flexion during squat movement were 
0.970–0.995 and 0.926–0.994, respectively (Table 2). 
The representative joint angle graphs to reveal the 
angle-trajectory validity of the multi-view image-
based motion analysis system are shown in Figure 
2.  

 
Table 1. Concurrent validity between the novel multi-view image-based motion analysis system and the 

Vicon motion capture system. 

Motion Measurement Mean ± SD (°) ICC (3, k) 95% CI CV (%) 

Knee flexion 
(sitting) 

MI-MAS 89.94 ± 10.01 
0.747* -0.017–0.937 5.80 

VMCS 82.87 ± 11.68 

Knee flexion 
(standing) 

MI-MAS 111.88 ± 5.45 
0.780† 0.116–0.945 5.23 

VMCS 101.65 ± 11.99 

Hip flexion 
(squatting) 

MI-MAS 105.57 ± 14.75 
0.902† 0.606–0.976 4.11 

VMCS 103.00 ± 13.41 

Knee flexion 
(squatting) 

MI-MAS 104.11 ± 16.15 
0.936† 0.743–0.984 4.10 

VMCS 116.73 ± 15.83 
MI-MAS, multi-view image-based motion analysis system without markers; VMCS, Vicon motion capture system 
with markers; SD, standard deviation; ICC, intraclass correlation coefficient based on the model (3) and type (the 

mean of k raters/measurements); * p < 0.05; † p < 0.01; 
CI, confidence interval; CV, coefficient of variation. 
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Table 2. Angle-trajectory validity between the novel multi-view image-based motion 
analysis system and the Vicon motion capture system. 

 Knee flexion (sitting) Knee flexion (standing) Hip flexion (squatting) 
Knee flexion 
(squatting) 

Subject ICC (3, 1) 95% CI ICC (3, 1) 95% CI ICC (3, 1) 95% CI ICC (3, 1) 95% CI 

1 0.988† 
0.984–
0.990 

0.998† 0.998–0.998 0.991† 
0.989–
0.993 

0.988† 
0.984–
0.990 

2 0.938† 
0.923–
0.950 

0.998† 0.998–0.999 0.994† 
0.993–
0.996 

0.994† 
0.992–
0.995 

3 0.991† 0.988–
0.993 

0.995† 0.994–0.996 0.975† 0.969–
0.980 

0.968† 0.960–
0.974 

4 0.988† 
0.986–
0.991 

0.971† 0.963–0.976 0.984† 
0.980–
0.987 

0.985† 
0.982–
0.988 

5 0.955† 
0.944–
0.964 

0.992† 0.990–0.994 0.993† 
0.991–
0.994 

0.946† 
0.932–
0.956 

6 0.948† 
0.935–
0.958 

0.990† 0.987–0.992 0.970† 
0.963–
0.976 

0.953† 
0.941–
0.962 

7 0.989† 
0.986–
0.991 

0.993† 0.991–0.994 0.995† 
0.994–
0.996 

0.986† 
0.982–
0.989 

8 0.985† 
0.981–
0.988 

0.993† 0.991–0.994 0.987† 
0.984–
0.990 

0.926† 
0.908–
0.941 

9 0.998† 
0.998–
0.999 

0.990† 0.988–0.992 0.986† 
0.982–
0.989 

0.978† 
0.972–
0.982 

10 0.950† 
0.938–
0.960 

0.859† 0.826–0.886 0.992† 
0.991–
0.994 

0.966† 
0.957–
0.973 

ICC, intraclass correlation coefficient based on the model (3) and type (single measurement); 
† p < 0.01; CI, confidence interval. 

 
 
 
 

Table 3. Intra-trial reliability of the novel multi-view image-based motion analysis system 
and the Vicon motion capture system. 

Motion Measurement 
Mean±SD (°) 

(Test 1) 
Mean±SD (°) 

(Test 2) 
ICC (3, 1) 95% CI 

Knee flexion 
(sitting) 

MI-MAS 88.64 ± 9.52 91.23 ± 10.89 0.918† 0.705–0.979 
VMCS 81.94 ± 11.04 83.80 ± 12.46 0.969† 0.879–0.992 

Knee flexion 
(standing) 

MI-MAS 110.99 ± 6.94 111.65 ± 8.42 0.773† 0.321–0.938 
VMCS 99.30 ± 11.99 101.64 ± 12.81 0.879† 0.587–0.968 

Hip flexion 
(squatting) 

MI-MAS 104.16 ± 15.12 106.99 ± 15.24 0.887† 0.611–0.971 
VMCS 102.17 ± 14.30 103.84 ± 12.65 0.974† 0.898–0.993 

Knee flexion 
(squatting) 

MI-MAS 103.65 ± 18.23 104.57 ± 14.65 0.908† 0.673–0.976 
VMCS 116.76 ± 16.63 116.70 ± 15.24 0.970† 0.885–0.992 

MI-MAS, multi-view image-based motion analysis system without markers; VMCS, Vicon motion capture 
system with markers; SD, standard deviation; ICC, intraclass correlation coefficient based on the model (3) and 

type (single measurement); † p < 0.01; CI, confidence interval. 
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Figure 1. Multi-view image-based motion analysis system. 

 
 
 
 
 

 
Figure 2. Representative joint angle graphs indicating the angle-trajectory validity 

of the multi-view image-based motion analysis system. 
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Reliability 

The intra-trial reliability was determined 
by repeated measures of the novel multi-view 
image-based motion analysis system (marker-less) 
and the Vicon motion capture system (with 
makers), and is presented in Table 3. Comparing 
ICC3, 1 values for knee flexion while sitting, the 
value obtained using the multi-view image-based 
motion analysis system was 0.918 (95% CI = 0.705–
0.979, CV = 2.83 %, SEM = 4.59, MDC = 12.71), while 
this obtained using the Vicon motion capture 
system was 0.969 (95% CI = 0.879–0.992, CV = 1.78 
%, SEM = 4.72, MDC = 13.07). The ICC3, 1 values for 
knee flexion while standing were 0.773 (95% CI = 
0.321–0.938, CV = 2.21 %, SEM = 3.66, MDC = 10.14) 
and 0.879 (95% CI = 0.587–0.968, CV = 3.14 %, SEM 
= 4.31, MDC = 11.96), indicating good reliability. 
The ICC3, 1 values for hip flexion during squat 
movement showed high reliability (ICC3, 1 = 0.887 
and 0.974; 95% CI = 0.611–0.971 and 0.898–0.993; 
CV = 3.13% and 1.43%; SEM = 5.10 and 2.17; MDC 
= 14.15 and 6.02) using both systems. Finally, the 
ICC3, 1 values for knee flexion during squat 
movement showed high reliability in both the 
multi-view image-based motion analysis system 
(ICC3, 1 = 0.908, 95% CI = 0.673–0.976, CV = 1.82 %, 
SEM = 4.99, MDC = 13.82) and the Vicon motion 
capture system (ICC3, 1 = 0.970, 95% CI = 0.885–
0.992, CV = 1.20 %, SEM = 2.76, MDC = 7.65) (Table 
3). 

Discussion 
The aim of this study was to determine the 

concurrent and angle-trajectory validity as well as 
intra-trial reliability of the proposed multi-view 
image-based motion analysis system during lower 
extremity tasks in healthy young men. The results 
demonstrated that the novel multi-view image-
based motion analysis system with marker-less 
pose estimation had high concurrent validity (ICC3, 

k = 0.747 to 0.936) when compared with hip and 
knee joint angles captured by the Vicon motion 
capture system with markers, as well as excellent 
reliability (ICC3, 1 = 0.773 to 0.974) when measured 
repeatedly. In particular, the angle-trajectory 
validity between these systems was very high 
(ICC3, 1 = 0.859 to 0.998) in measuring joint angles 
during lower extremity tasks, and it was revealed 
in all participants. We suggest that this novel 
marker-less motion analysis system is highly 
accurate and reliable for the measurement of joint  

 
angles or kinematics during human movement.  

This study supports previous studies 
conducted on healthy young men and preschool 
children, which investigated the concurrent 
validity and reliability of multi-view image-based 
motion capture systems determined by comparing 
the Vicon motion capture system through 
kinematics of the upper and lower extremities (Cai 
et al., 2019; Harsted et al., 2019). Cai et al. (2019) 
investigated the concurrent validity and test-retest 
reliability of a Kinect V2 system based on 2D depth 
images during four upper limb tasks (hand to the 
contralateral shoulder, hand to the mouth, 
combing hair, and hand to the back pocket) in ten 
healthy men. The Kinect V2-based upper limb 
functional assessment system had high concurrent 
validity (Pearson’s r correlation, r = 0.74 to 0.99) 
and test-retest reliability (r = 0.70 to 0.96) of the 
range of motion in upper limb tasks (Cai et al., 
2019). In another study, lower extremity 
kinematics data on squat and standing broad jump 
movements between the Captury based on a 
passive vision system and Vicon motion analysis 
system were compared in 14 preschool children. It 
was revealed that the repeated measures 
correlations (means concurrent validity of The 
Captury) on hip and knee flexion during squats 
and jumps ranged from 0.73 to 0.99 (Harsted et al., 
2019). In addition, Ceseracciu et al. (2014) 
compared marker-less and marker-based motion 
capture technologies through kinematic gait data, 
and demonstrated that sagittal plane kinematics 
were estimated better than on the frontal and 
transverse planes in the hip, knee, and ankle joints. 

3D motion capture systems with markers 
or trackers, such as the Xsens MVN BIOMECH 
system (Xsens Technologies B.V., The 
Netherlands) and a 3D motion analyzer (Shimano 
Dynamics Lab, Sittard, Netherland), also showed 
high validity and reliability when compared with 
kinematic data from the Vicon motion capture 
system (Al-Amri et al., 2018; Bouillod et al., 2016). 
Bouillod et al. (2016) highlighted the importance of 
marker placement for comparative statistical 
analysis between the two motion capture systems, 
and explained that differences observed between 
the systems were related to the displacement of the 
3D motion analyzer markers during dynamic 
measurements (Bouillod et al., 2016). These 
marker-based 3D motion captures suffer from  
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well-known shortcomings including obtrusion, 
expense, data errors owing to damage to the 
marker trajectories, long set-up times, requirement 
of operating skills, and the lack of ability to capture 
the dynamic motion of subjects in normal clothing 
(Krause et al., 2015; Xu, 2019). In contrast, the 
multi-view image-based motion capture system 
performs well in less controlled indoor settings or 
outdoors, and has advantages, such as low cost and 
no specific preparation of the subject (Elhayek et 
al., 2015; Xu, 2019). Therefore, many researchers 
have gained interest in multi-view image-based 
motion capture systems (Ceseracciu et al., 2014). To 
our knowledge, this study is the first attempt to 
investigate the angle-trajectory validity of a multi-
view image-based motion analysis system without 
markers through lower extremity kinematic 
measures. Since this novel system is based on 
multi-view images from various perspectives, 3D 
motion analysis is possible. Moreover, regardless 
of the light intensity, such as an infrared strobe or 
LED marker, the joint kinematic data could be 
collected to evaluate the intervention effects 
during the rehabilitation process and monitor the 
sports performance of athletes in bright indoor and 
outdoor training facilities and sports fields.   

Although this study revealed meaningful 
findings, certain limitations should be considered. 
First, the lower-extremity kinematics of this study 
only included sagittal plane motions of hip and 
knee flexion/extension, owing to the importance of 
hip and knee flexion-extension moments in sports 
injuries. It has been theorized that impaired 
strength in the sagittal plane musculature limits 
the amount of knee and hip flexion during 
dynamic tasks, and consequently, causes a greater 
dependence on passive limits in the frontal plane, 
such as ligaments, to decelerate the body's center 
of mass. For example, increased frontal plane  
 

 
loading at the knee is important because knee 
valgus angles and adductor moments are known 
as predictive factors of anterior cruciate ligament 
(ACL) injury. It has been reported in the literature 
that an ACL injury group exhibit a significantly 
greater hip flexion moments compared with an 
uninjured group (DeMorat et al., 2004; Weinhandl 
et al., 2014). This shows strong evidence 
demonstrating that sagittal plane factors 
contribute to the mechanism of the ACL injury. 
Further studies should investigate the upper or 
lower extremity kinematics of the sagittal, frontal, 
and horizontal planes during clinically relevant 
functional activities or various dynamic and fast 
sports performances. Second, studies analyzing 
joint kinematics on representative sports 
performances are also required in outdoor or 
sports fields because the data in this study were 
only collected in bright indoor environments. 
Finally, the current findings cannot be generalized 
to the sagittal plane kinematics of lower extremity 
motions, which may indicate the need for a large 
sample size in healthy adults or athletes.  

This study investigated the concurrent and 
angle-trajectory validity and intra-trial reliability 
of a novel multi-view image-based motion analysis 
system. The findings of this study revealed good to 
high correlations in hip and knee flexion during 
lower extremity tasks between the multi-view 
image-based motion analysis system and Vicon 
motion capture system with markers, suggesting a 
high agreement. Moreover, the intra-trial 
reliability of each system was excellent, indicating 
high reproducibility. Therefore, the novel multi-
view image-based motion analysis system may be 
a useful measurement tool to evaluate the 
intervention effects during the rehabilitation 
process and monitor the sports performance of 
athletes in sports training facilities and sports 
fields.
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